Мобильный сервис принятия решений в экстремальных ситуациях на основе облачных технологий второго поколения и модели искусственного общества

Владислав Александрович Карбовский, А. В. Богачева, Д. В. Волошин, К. А. Пузырева

Аннотация


Рассмотрены аспекты разработки массовых мобильных сервисов для интеллектуальной поддержки персональных решений в экстремальных ситуациях с учетом фактора доверия пользователей на основе облачной платформы CLAVIRE и моделированием социальных процессов.

Mobile decision support second-generation cloud technologies and artificial society simulation based service for emergency situations

Modern smartphones are multipurpose devices that provide great opportunities, such as Internet access, positioning technology, and others. Together with the modern cloud technologies it allows to organize mass mobile services (MMS), focused on personalized decision support users. One of the specific directions of the development of massive mobile services is extreme situations support, which includes the notification of this situation and the organization of the evacuation. The distribution of mobile technology not only able to improve the speed of response to a potential threat, but also able to independently take steps that reduce the risk of it for individual. The results of the MMS computing are a set of scenarios that allow the user to choose the decision on the ground. To construct scenarios in terms of incompleteness and indeterminacy of input information we are using computer simulation, requiring the use of cloud technology to implement intensive procedures. This article discusses aspects of MMS for intelligent evacuation support in emergency situations based on the second-generation cloud platform CLAVIRE.


Полный текст:

PDF

Литература


Yu. G. Vasin, S. V. Zherzdev, and A. A. Egorov. Mobile Geoinformation Systems // Pattern Recognition and Image Analysis June 2009, Volume 19, Issue 2, P. 342-348

Кашевник Б.Л. Безопасность людей и проблемы самостоятельной эвакуации во время ЧС // http://www.proffservis.ru/?publ=10&page=580

Knyazkov V.K., Kovalchuk S.V., Tchurov T.N., Maryin S.V., Boukhanovsky V.A. CLAVIRE: e-Science infrastructure for data-driven computing // Journal of Computational Science Volume 3, Issue 6, November 2012, P. 504–510

Yamori K. Disaster Risk Sense in Japan and Gaming Approach to Risk Communication // International Journal of Mass Emergencies and Disasters August 2007, Vol. 25, No. 2, P. 101–131

Trainor J., McNeil S. A brief summary of social science warning and response literature: a report to cot Netherlands // University of Delaware Disaster Research Center, Miscellaneous report #62, 2008

Aguirre B. Homeland Security Warnings: Lessons Learned and Unlearned // International Journal of Mass Emergencies and Disasters August 2004, Vol. 22, No. 2, pp. 103–115

Boukhanovsky A.V., Ivanov S.V. Urgent Computing for Operational Storm Surge Forecasting in Saint-Petersburg // Procedia Computer Science, Vol. 9. 2012. P. 1704–1712

Teerayut Horanont. A Study on Urban Mobility and Dynamic Population Estimation by Using Aggregate Mobile Phone Sources // The University of Tokyo Center for Spatial Information Service,

CSIS Discussion Paper No. 115, 2010

Balmer, M., K. Meister, and K. Nagel. Agent-based simulation of travel demand: Structure and computational performance of MATSim-T // ETH, Eidgenössische Technische Hochschule Zürich,

IVT Institut für Verkehrsplanung und Transportsysteme, 2008

Ковальчук С.В., Князьков К.В., Чуров Т.Н., Смирнов П.А., Бухановский А.В. Организация человеко-компьютерного взаимодействия в средах компьютерного моделирования на базе облачной инфраструктуры // Прикладная информатика. – № 5 (41). – 2012. – С. 89-102.

ACORN Profile – Population, Report for Businessballs.com, 2006-based subnational population projections, National Statistics and 2008-based variant population projections, National Statistics, 2010.


Ссылки

  • На текущий момент ссылки отсутствуют.