Подготовка набора данных для вопросно-ответного поиска по базе знаний. Первый этап: сопоставление сущностей

Владислав Олегович Кораблинов

Аннотация


На текущий момент вопросно-ответный поиск по базам знаний является активно развивающейся областью. Новые подходы демонстрируют стабильное повышение качества, однако такое развитие было бы невозможно без разработки наборов данных, позволяющих обучать модели, измерять их качество и ставить все более сложные задачи. К сожалению, все существующие наборы данных содержат вопросы только на английском языке, что ограничивает исследования в этой области для других языков. Мы хотим заполнить этот пробел, разработав набор данных для оценки методов вопросно-ответного поиска по базам знаний на русском языке. В данной работе описывается способ создания такого набора данных с помощью краудсорсинга , одним из ключевых этапов которого является выделение в текстах вопросов и ответов упоминаний сущностей и их сопоставление с сущностями базы знаний. Разработанный нами алгоритм позволяет строить списки таких возможных упоминаний и находить правильную сущность в 95% случаев. При этом алгоритм автоматически связывает фрагменты текста с сущностями базы знаний Wikidata . Полученные списки в дальнейшем будут использованы для получения разметки вопросов и ответов, необходимой для создания нового набора данных.

Ключевые слова


вопросно-ответный поиск; базы знаний; графы знаний; сопоставление сущностей; краудсорсинг

Полный текст:

PDF


DOI: https://doi.org/10.17586/2541-9781-2020-4-98-108

Ссылки

  • На текущий момент ссылки отсутствуют.


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.